skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Jiahua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology that facilitates the study of macromolecular structures at near-atomic resolution. Recent volumetric segmentation approaches on cryo-ET images have drawn widespread interest in the biological sector. However, existing methods heavily rely on manually labeled data, which requires highly professional skills, thereby hindering the adoption of fully-supervised approaches for cryo-ET images. Some unsupervised domain adaptation (UDA) approaches have been designed to enhance the segmentation network performance using unlabeled data. However, applying these methods directly to cryo-ET image segmentation tasks remains challenging due to two main issues: 1) the source dataset, usually obtained through simulation, contains a fixed level of noise, while the target dataset, directly collected from raw-data from the real-world scenario, have unpredictable noise levels. 2) the source data used for training typically consists of known macromoleculars. In contrast, the target domain data are often unknown, causing the model to be biased towards those known macromolecules, leading to a domain shift problem. To address such challenges, in this work, we introduce a voxel-wise unsupervised domain adaptation approach, termed Vox-UDA, specifically for cryo-ET subtomogram segmentation. Vox-UDA incorporates a noise generation module to simulate target-like noises in the source dataset for cross-noise level adaptation. Additionally, we propose a denoised pseudo-labeling strategy based on the improved Bilateral Filter to alleviate the domain shift problem. More importantly, we construct the first UDA cryo-ET subtomogram segmentation benchmark on three experimental datasets. Extensive experimental results on multiple benchmarks and newly curated real-world datasets demonstrate the superiority of our proposed approach compared to state-of-the-art UDA methods. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Free, publicly-accessible full text available February 27, 2026
  3. Free, publicly-accessible full text available February 25, 2026
  4. Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology that facilitates the study of macromolecular structures at near-atomic resolution. Recent volumetric segmentation approaches on cryo-ET images have drawn widespread interest in the biological sector. However, existing methods heavily rely on manually labeled data, which requires highly professional skills, thereby hindering the adoption of fully-supervised approaches for cryo-ET images. Some unsupervised domain adaptation (UDA) approaches have been designed to enhance the segmentation network performance using unlabeled data. However, applying these methods directly to cryo-ET image segmentation tasks remains challenging due to two main issues: 1) the source dataset, usually obtained through simulation, contains a fixed level of noise, while the target dataset, directly collected from raw-data from the real-world scenario, have unpredictable noise levels. 2) the source data used for training typically consists of known macromoleculars. In contrast, the target domain data are often unknown, causing the model to be biased towards those known macromolecules, leading to a domain shift problem. To address such challenges, in this work, we introduce a voxel-wise unsupervised domain adaptation approach, termed Vox-UDA, specifically for cryo-ET subtomogram segmentation. Vox-UDA incorporates a noise generation module to simulate target-like noises in the source dataset for cross-noise level adaptation. Additionally, we propose a denoised pseudo-labeling strategy based on the improved Bilateral Filter to alleviate the domain shift problem. More importantly, we construct the first UDA cryo-ET subtomogram segmentation benchmark on three experimental datasets. Extensive experimental results on multiple benchmarks and newly curated real-world datasets demonstrate the superiority of our proposed approach compared to state-of-the-art UDA methods. 
    more » « less
  5. null (Ed.)
    Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. Methods Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption–extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. Results SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. Conclusions The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers. 
    more » « less